Improving the density of jammed disordered packings using ellipsoids.

نویسندگان

  • Aleksandar Donev
  • Ibrahim Cisse
  • David Sachs
  • Evan A Variano
  • Frank H Stillinger
  • Robert Connelly
  • Salvatore Torquato
  • P M Chaikin
چکیده

Packing problems, such as how densely objects can fill a volume, are among the most ancient and persistent problems in mathematics and science. For equal spheres, it has only recently been proved that the face-centered cubic lattice has the highest possible packing fraction phi=pi/18 approximately 0.74. It is also well known that certain random (amorphous) jammed packings have phi approximately 0.64. Here, we show experimentally and with a new simulation algorithm that ellipsoids can randomly pack more densely-up to phi= 0.68 to 0.71 for spheroids with an aspect ratio close to that of M&M's Candies-and even approach phi approximately 0.74 for ellipsoids with other aspect ratios. We suggest that the higher density is directly related to the higher number of degrees of freedom per particle and thus the larger number of particle contacts required to mechanically stabilize the packing. We measured the number of contacts per particle Z approximately 10 for our spheroids, as compared to Z approximately 6 for spheres. Our results have implications for a broad range of scientific disciplines, including the properties of granular media and ceramics, glass formation, and discrete geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids.

Continuing on recent computational and experimental work on jammed packings of hard ellipsoids [Donev, Science 303, 990 (2004)] we consider jamming in packings of smooth strictly convex nonspherical hard particles. We explain why an isocounting conjecture, which states that for large disordered jammed packings the average contact number per particle is twice the number of degrees of freedom per...

متن کامل

Tomographic analysis of jammed ellipsoid packings

Disordered packings of ellipsoidal particles are an important model for disordered granular matter. Here we report a way to determine the average contact number of ellipsoid packings from tomographic analysis. Tomographic images of jammed ellipsoid packings prepared by vertical shaking of loose con gurations are recorded and the positions and orientations of the ellipsoids are reconstructed. Th...

متن کامل

Robust algorithm to generate a diverse class of dense disordered and ordered sphere packings via linear programming.

We have formulated the problem of generating dense packings of nonoverlapping, nontiling nonspherical particles within an adaptive fundamental cell subject to periodic boundary conditions as an optimization problem called the adaptive-shrinking cell (ASC) formulation [S. Torquato and Y. Jiao, Phys. Rev. E 80, 041104 (2009)]. Because the objective function and impenetrability constraints can be ...

متن کامل

Disordered strictly jammed binary sphere packings attain an anomalously large range of densities.

Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly jammed binary packings (packings that remain mechanically stable under general shear deformations and compressions) can be produced with an anomalously large range of average p...

متن کامل

Maximally random jammed packings of Platonic solids: hyperuniform long-range correlations and isostaticity.

We generate maximally random jammed (MRJ) packings of the four nontiling Platonic solids (tetrahedra, octahedra, dodecahedra, and icosahedra) using the adaptive-shrinking-cell method [S. Torquato and Y. Jiao, Phys. Rev. E 80, 041104 (2009)]. Such packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The MRJ packing fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 303 5660  شماره 

صفحات  -

تاریخ انتشار 2004